If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3+4m^2=0
a = 4; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·4·(-3)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*4}=\frac{0-4\sqrt{3}}{8} =-\frac{4\sqrt{3}}{8} =-\frac{\sqrt{3}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*4}=\frac{0+4\sqrt{3}}{8} =\frac{4\sqrt{3}}{8} =\frac{\sqrt{3}}{2} $
| x-5x-10=9+2x=7 | | -(5-5x)+8=-17+2x | | -9t+2=54 | | x16−x34=−1 | | 4-(x-3)+3x=-2(x-3)-5x+1 | | 8.3x-7=x+9.x= | | 6x+9=3x+29 | | 12-2(x-1)-4(x+1)=3-2(x+1) | | 3y–7=7+y | | 21/50=x/1346 | | 4x2+2x+15=0 | | 7x+5-3x=4(x-4) | | 2x-4(1-x)=-3(x-1)-10 | | 5x+18=2x+42 | | 4n-2=5n+12 | | 3d-1=14+2d | | 4(x+5)=3(x-7) | | 19x−9x=20 | | x/3-x/3-7=3 | | 104-36=x | | (15+7)x=99 | | 6x×12=36 | | 2y-7/3=5 | | 2y-7/3=15 | | 84+19=n | | 2(3x-1)-4x=5x-2 | | 4(x-2)+1+3x=5(x+3) | | 7(m-2)=5(2m-1) | | 17^2+x^2=25^2 | | -32x-3=-28x-31 | | 6(2x-3)=8-2(3x+1) | | x^2-5/2x=0 |